
Compressed Sensing Using Sparse-Graph Codes for
the Continuous-Alphabet Setting

Dong Yin, Ramtin Pedarsani, Xiao Li, Kannan Ramchandran
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Email: {dongyin, ramtin, xiaoli, kannanr}@eecs.berkeley.edu

Abstract—In this paper, we consider the compressive sensing
(CS) problem in the presence of noise. The problem is to recover
a K-sparse signal s ∈ Rn from noisy linear measurements
y = As + w. We propose a fast recovery algorithm that
can reconstruct any K-sparse signal s with time complexity
that grows linearly in K and sublinearly in n. Specifically,
with high probability, our algorithm is able to recover an
arbitrarily large fraction of the support of the sparse sig-
nal using Θ(K log(n) log log(n)) samples and Θ(K log1+r(n))
computational cost, where r > 0 is an arbitrarily small
constant. The sample and time complexities are near order-
optimal. Further, our algorithm is able to recover the exact
support with Θ(K log(K) log(n) log log(n)) measurements and
time complexity of Θ(K log(K) log1+r(n)). With a mild technical
assumption on the existence of a code with universal decoding
algorithm and small decoding complexity, our algorithm can
achieve Θ(K log(n)) sample and time complexities for the large
fraction recovery, and furthermore, Θ(K log(K) log(n)) sample
and time complexities for the full support recovery. The design
of measurements and the recovery algorithm are based on
sparse graph codes. We also justify our theoretical results with
numerical experiments.

I. INTRODUCTION

Sparse signal processing has become an important area in
both theory and applications [1], [2]. Compressive sensing
(CS) [3] is one of the major problems in this area that has
been largely studied in the literature. The goal of compressive
sensing is to recover a sparse signal from linear measure-
ments using a small number of samples, and in addition,
the computational cost of the algorithm should also be as
small as possible. Most of the common approaches to com-
pressive sensing, such as `1 norm minimization [3], Iterative
Hard Thresholding [4], and the OMP algorithm [5], require
m = O(K log(n)) samples to guarantee successful recovery,
where K and n denote the sparsity and dimension of the
signal, respectively. However, the time complexities of these
algorithms are usually Ω(n), and this computational cost can
be prohibitive when processing signals with high dimensions.
Therefore, it is becoming increasingly important to study fast
algorithms for compressive sensing. Some fast algorithms [6]–
[8], for compressive sensing have been proposed in recent
years. Among these algorithms, the peeling style algorithm
based on sparse graph codes [9] is shown to have almost order-
optimal sample and time complexities Θ(K log(n)) for noisy
compressive sensing.

One shortcoming of the peeling style algorithm in [9] is that

it is based on the assumption that the non-zero elements in the
signal lie in finite constellation points, which is impractical
in some applications. In this paper, we propose an algorithm
that relaxes this assumption and is able to reconstruct signals
with components coming from a continuous alphabet, while
maintaining sublinear sample and time complexities. Specifi-
cally, we consider two types of recovery guarantees: one is to
recover an arbitrarily large fraction of the support of the sparse
signal (large fraction recovery), and the other is to recover
the full support of the signal (full support recovery). We
provide the recovery guarantees using `∞ norm bounds with
error probability approaching 0. Specifically, our algorithm
can recover an arbitrarily large fraction of the support of
the sparse signal using Θ(K log(n) log log(n)) samples and
Θ(K log1+r(n)) computational cost, where r > 0 is an arbi-
trarily small constant. The sample and time complexities are
near order-optimal. To recover the exact support, our algorithm
needs Θ(K log(K) log(n) log log(n)) measurements and time
complexity of Θ(K log(K) log1+r(n)). With a mild technical
assumption on the existence of a code with universal decoding
algorithm and small decoding complexity, our algorithm can
achieve Θ(K log(n)) sample and time complexities for the
large fraction recovery, and furthermore, Θ(K log(K) log(n))
sample and time complexities for the full support recovery.1

Our algorithm also provides a general framework for the
signal processing and machine learning algorithms which are
based on sparse graph codes to provably work for continuous-
valued signals in the presence of noise. Specifically, we
point out that the robustified algorithms for sparse DFT [11],
compressive phase retrieval [12] and sparse covariance estima-
tion [13] can also work for continuous-valued signals using the
methodology that we propose in this paper.

A. Problem Formulation

We formally define the problem as follows. Let s ∈ Rn be
a K-sparse unknown signal. With measurement matrix A ∈

1While preparing this paper, we were aware of another work which uses
a scheme similar to our algorithm [10]. However, our algorithm has stronger
theoretical guarantee than the algorithm in [10] due to the following two
reasons. First, the algorithm in [10] guarantees a constant error probability by
using Θ(K log2(n)) samples while our algorithm can use a similar amount
of samples to achieve vanishing error probability. This is due to our truncation
scheme which will be detailed in the following sections. Second, we propose
a concatenated code which gives rigorous guarantee of the channel coding
subroutine of the algorithm.

Rm×n, we can get the linear measurements y = As + w,
where w ∼ N (0, σ2I) denotes the i.i.d. Gaussian noise, with
known variance σ2. We define the support of the signal s,
denoted by supp(s), as the set of indices of the non-zero
elements of s, i.e., supp(s) = {j : sj 6= 0}. Consequently,
we have |supp(s)| = K in our problem. We assume that the
sparse signal s satisfies the following minimum magnitude
assumption:

Assumption 1. For each j ∈ supp(s), |sj | ≥ β for some
constant β > 0.

We consider the asymptotic regime where n and K ap-
proach infinity, and we assume no further assumption on n
and K. Our goal is to design the measurement matrix A and
the decoding algorithm such that we can decode s with small
sample and time complexity.

B. Notations

In this paper, for any positive integer k, [k] denotes the set
{1, 2, . . . , k}. For a vector x, xj denotes the jth element of
x. For x ∈ Rn and a subset Γ ⊂ [n], xΓ is a vector consisting
of the elements of x indexed by Γ. We use standard BIG-O
notations O(·), Θ(·), and Ω(·). The notation poly(n) denotes
a polynomial with an arbitrarily large constant degree.

II. MAIN RESULTS

We state our main results in this section. Our first result
provides the guarantee for recovering an arbitrarily large
fraction 1 − δ of the support (we call this kind of recovery
guarantee the large fraction recovery).

Theorem 1. Let s ∈ Rn be a K-sparse signal with support
Γ, satisfying Assumption 1. Let ε > 0 be a preassigned
accuracy parameter, and suppose that there exist universal
constants c, c3, and c4 such that β > max{cε, (c3σ+ c4ε)

2}.
Let ŝ be the signal recovered by our proposed algorithm
and Γ̂ = supp(ŝ). Then, for an arbitrarily small δ > 0,
with m = Θ(log(1/δ)K log(n)[log log(n) + max{σ2/ε2, 1}])
samples, our algorithm satisfies Γ̂ ⊂ Γ and

P
{
|Γ̂|/|Γ| ≥ 1− δ and ‖ŝΓ̂ − sΓ̂‖∞ ≤ Cε

}
≥1−O(exp{−c1(δ)Kc2(δ)}+ 1/poly(n)),

where C is a universal constant and c1(δ) and c2(δ)
are determined only by δ. The time complexity is
Θ(log(1/δ)K log(n)[logr(n)+max{σ2/ε2, 1}]), where r > 0
is an arbitrarily small constant.

Here, the probability statement comes from the random-
ness in measurement design of the algorithm. We can see
that since σ, ε, and δ are constants, the sample and time
complexities of the algorithm are Θ(K log(n) log log(n)) and
Θ(K log1+r(n)), respectively, and the probability of accurate
large fraction recovery (in terms of `∞ norm) approaches 1
as n and K approach infinity. We need several steps to prove
Theorem 1. These steps are given in Sections IV, V, and VI.
The final proof will be concluded in Section VII.

In addition, since one single trial of the our algorithm can
recover an arbitrarily large fraction of the support, we can
make Θ(log(K)) trials of the algorithm with independent
randomness to recover the full support of the sparse signal
(we call this recovery guarantee the full recovery). We call this
version of our algorithm the repeated algorithm, and provide
the recovery guarantee here.

Theorem 2. Assume the same conditions as in Theo-
rem 1. Then, with m = Θ(K log(K) log(n)[log log(n) +
max{σ2/ε2, 1}]) samples, the repeated algorithm satisfies

P
{

Γ̂ = Γ and ‖ŝ− s‖∞ ≤ Cε
}

≥1−O(exp{−c1Kc2} log(K) + 1/poly(n)),

where c1 and c2 are universal constants. The time complexity
is Θ(K log(K) log(n)[logr(n) + max{σ2/ε2, 1}]).

We can see that since σ and ε are as constants,
the sample and time complexities of the algorithm are
Θ(K log(K) log(n)) and Θ(K log(K) log(n)), respectively,
and the probability of accurate full recovery (in terms of `∞
norm) approaches 1 as n and K approaches infinity.

We will see in Section IV that one part of the recovery
algorithm can be formulated as a decoding algorithm in a
binary symmetric channel (BSC) with symbols ±1 (we use
the terminology BSC even though the conventional definition
of BSC involves symbols {0, 1}), and that we only know
an upper bound of the bit flip probability. We construct
a concatenated code for this BSC, and the encoding and
decoding algorithms only need the knowledge of an upper
bound of the bit flip probability. The block length of the code-
word is Θ(log(n) log log(n)) and the decoding complexity is
Θ(log1+r(n)). The decoding algorithm of the concatenated
code provably succeeds with probability O(1/poly(n)). This
is the reason for the appearance of the log log(n) and logr(n)
factors in the sample and time complexities. More details
will be provided in Section IV. Here, we mention that this
code is used only for theoretical purpose. To the best of
our knowledge, the decoding algorithms of the existing codes
with decoding complexity linear in the block length of the
codewords, such as the LDPC codes, all need the exact
knowledge of the bit flip probability of the BSC channel to
provably succeed, and therefore, we need this concatenated
code. However, in practice, the existing state-of-the-art codes
can work well in BSC with an upper bound of the bit flip
probability. If we believe that there exists a code with universal
decoding algorithm, decoding complexity linear in the block
length of the code, and error probability exponentially small
in the block length, then our results will be improved to
Θ(K log(n)) sample and time complexities for the large
fraction recovery, and Θ(K log(K) log(n)) sample and time
complexities for full recovery.

We summarize our results in Table I. Here, all the recovery
guarantees have success probabilities approaching 1 as n and
K approaches infinity.

TABLE I: Sample and time complexities

Type large fraction large fraction with conjecture full recovery full recovery with conjecture
Sample Θ(K log(n) log log(n)) Θ(K log(n)) Θ(K log(K) log(n) log log(n)) Θ(K log(K) log(n))

Time Θ(K log1+r(n)) Θ(K log(n)) Θ(K log(K) log1+r(n)) Θ(K log(K) log(n))

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(b)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(c)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(d)

Fig. 1: Peeling style algorithm. Left nodes correspond to the signal elements; white, blue, and green nodes represent the zero elements,
unrecovered non-zero elements, and recovered non-zero elements, respectively. (a) The bipartite graph representation of the design of
measurements. The support of the signal is {1, 3, 5, 6, 7}. The connection between the zero elements and the bins are shown in dashed
edges, since the zero elements do not have actual influence on the measurements. (b) Bins 1 and 7 are singletons, so the singleton balls s1
and s7 are recovered. (c) The decoder peels s1 and s7 from other bins. Then bins 3 and 4 become singletons with singleton balls s3 and s6,
which can be recovered. (d) The decoder peels s3 and s6 from other bins and s5 becomes a singleton ball. Then, all the non-zero elements
are recovered.

III. RELATED WORK

Compressive sensing has been extensively studied in recent
years and various algorithms have been proposed for different
problem settings. We do not attempt to provide a thorough
review of all the related works. We refer the readers to [9]
for a summary of the main classes of compressive sensing.
Since our proposed algorithm is built upon of the peeling style
sublinear time complexity algorithm for compressive sensing
proposed in [9], we provide a brief review of the algorithm in
[9], which is based on sparse graph codes, and the basic idea
of the algorithm is to use a “divide-and-conquer” approach.

We use a bipartite graph to model the problem. We divide
the m measurements into M sets, and call each set of
measurements a bin. By careful design of the measurement
matrix, we can make the measurements in each bin only
influenced by a small number of signal elements. For example,
for a 7 dimensional signal, if we design the ith row of the
measurement matrix to be aT

i = [1 0 1 0 0 0 1], then the
measurement yi is only influenced by the first, third, and the
seventh signal elements. Then, we can draw a bipartite graph
with n left nodes representing the elements of the sparse
signal, M right nodes representing the bins, and the edges
representing the influence of the signal elements on the bins.

Further, we know that only the non-zero elements can have
actual influence on the measurements. Therefore, we prune the
graph and only focus on the K left nodes which correspond
to the non-zero signal elements. We call these K left nodes
balls. Then, we can classify the bins according to the number

of balls connected to them (or equivalently, the number of
non-zero elements which have influence on the bins). We say
that the bins connected to zero, one, and more than one balls
zerotons, singletons, and multitons, respectively. The single
signal element connected to a singleton is called a singleton
ball.

In the peeling style algorithm, the measurements in a bin
are carefully designed such that one can detect whether a bin
is a singleton or not, and if a bin is a singleton, one can find
the location index and the value of the singleton ball2. Then
we can subtract (or peel) the influence of this element from
other bins. By doing this process iteratively, one can show that
if the bipartite graph is properly designed, we can recover all
the non-zero elements. We provide an example in Figure 1,
and in Section V, we will revisit this example with a slightly
different peeling strategy.

In the following sections, we will provide the details of the
design of the measurement matrix, the peeling algorithm, and
the singleton detection procedure of the our algorithm.

IV. DESIGN OF MEASUREMENTS

The measurement matrix A of our algorithm is a row tensor
of a modulation matrix T ∈ {−1, 1}R×n and a code matrix
H ∈ {0, 1}M×n with rows hi and entries hi,j , i ∈ [M],

2There are various ways to find the location index and the value. For
example, in the noiseless case, one can use ratio tests. We do not provide
details of the singleton detection process of the peeling style algorithm in [9]
here. In later parts of this paper, we will provide the methods that we use in
our algorithm.

j ∈ [n], denoted by A = T ⊗H . Specifically, the row tensor
means that A = [AT

1 AT
2 · · ·A

T
M]T, where Ai = Tdiag(hi)

and diag(hi) is a square diagonal matrix with the elements of
hi on the main diagonal. Consequently, the total number of
measurements is m = MR.

A. Code Matrix

The code matrix H is the biadjacency matrix of a d-left
regular random bipartite graph, where d is a parameter of
the algorithm. Specifically, we construct a random bipartite
graph with n left nodes and M right nodes, and each left
node is connected to d right nodes uniformly at random. The
left nodes correspond to the n signal elements and the M right
nodes correspond to the M sets of measurements generated by
sub-matrices A1, . . . ,AM . The i-th row of H represents the
connection between the i-th right node and all the left nodes.
For example, in Figure 1(a), the third right node is connected
to the third and fourth left nodes, and therefore, the third row
of H is h3 = [1 0 1 1 0 0 0].

We still use the terminologies in Section III. We call the
left nodes which correspond to the K non-zero signal elements
balls, and call the M right nodes bins, and we still classify the
bins according to the number of balls in them, using the ter-
minologies zerotons, singletons, singleton balls, and multitons.
We also define the measurements of bin i as yi = Ais+wi,
where wi is the noise. Consequently, y = [yT

1 yT
2 · · ·yT

M]T

and w = [wT
1 wT

2 · · ·wT
M]T. Since Ai = Tdiag(hi), we

have yi = Txi+wi, where xi = diag(hi)s is called the true
signal of bin i. Our algorithm is a process of finding all the
non-zero signal elements iteratively, or equivalently, finding
the locations and values of the K balls. One should notice
that the type of a bin can change during the decoding process
due to the iterative peeling. For instance, if a bin contains
two balls and one ball is peeled in a certain iteration, the bin
becomes a singleton.

B. Modulation Matrix

Now we describe how we design the modulation matrix T .
The matrix T consists of two parts, the location matrix L ∈
{−1, 1}R1×n and the verification matrix V ∈ {−1, 1}R2×n,
i.e., T = [LT V T]T, and thus, we have R = R1 + R2. We
let T j , Lj , and V j be the columns of T , L, and V , j ∈ [n].

Before we demonstrate the design of the location matrix
and the verification matrix, we briefly describe the functions
of the two matrices. The modulation matrix T is used to check
whether a bin is a singleton, and if a bin is a singleton, the
modulation matrix finds the location index and estimate the
value of the singleton ball. Suppose bin i is a singleton and
the singleton ball is located at j, j ∈ [n], i.e., xi = sjej ,
where ej is the j-th vector of the standard basis. Then, the
measurements of this bin is yi = sjT j + wi. We divide
the measurements into two parts, location measurements y`i
and verification measurements yvi , which correspond to the
location matrix and verification matrix, respectively. Then, we
have y`i = sjLj + w`

i and yvi = sjV j + wv
i , where w`

i and
wv
i are the corresponding noise vectors. The location matrix is

used to find the location index j, and the verification matrix
is used to check whether this bin is indeed a singleton and
estimate the value of sj .

The design of the verification matrix is relatively simple.
The entries of the verification matrix V are i.i.d. Rademacher
distributed, i.e., all the entries are independent and equally
likely to be either 1 or −1. The detailed procedures of sin-
gleton verification and value estimation are shown in Section
V. The design of the location matrix L is more complicated.
Here, we demonstrate the basic idea. As we can see, if
bin i is indeed a singleton, then the location measurements
y`i is a scaled version of Lj with additive noise w`

i . Let
ζi = Φ(−|sj |/σ), where Φ(·) is the CDF of standard Gaussian
distribution. Taking the sign of all the location measurements
and considering the randomness of the Gaussian noise, we can
see that for each element y`i,k in the location measurements,
k ∈ [R1], we have

sgn(y`i,k) =

{
sgn(sj)Lj,k with probability 1− ζi
−sgn(sj)Lj,k with probability ζi.

Now the problem becomes a channel coding problem in a
symmetric channel with symbols {+1,−1}. The channel is
similar to the binary symmetric channel (BSC) except the
fact that we are using {+1,−1} rather than {0, 1}. For
simplicity we will still call this channel a BSC in the following
context. Consider the n possible locations of the singleton
balls as n messages. We encode the n messages by R1-bit
codewords with symbols ±1, or equivalently, we design a
map f : [n] → {1,−1}R1 , and the columns of the location
matrix are the codewords of all the messages, i.e., Lj = f(j),
j ∈ [n]. If sj < 0, the codeword gets a global sign flip and
then we get the modified codeword sgn(sj)Lj . Transmitting
this modified codeword through a BSC with bit flip probability
ζi, we get the received sequence, sgn(y`i). Then we need a
decoding algorithm to decode the original codeword Lj , up
to a global sign flip, and then, there are at most two possible
locations at which the singleton ball can be. The verification
measurements can check whether the bin is indeed a singleton,
find the correct location among the two possible choices, and
estimate the value of the singleton ball.

Now we describe the encoding and decoding scheme of the
location matrix. The code should satisfy four properties:
(i) The block length of the codewords should be as small

as possible. Since we need at least Θ(log(n)) bits to
encode n messges, R1 should be as close to Θ(log(n))
as possible.

(ii) The decoding complexity should be as close to Θ(log(n))
as possible.

(iii) The decoding algorithm succeeds with high probability;
specifically, when there are Θ(1) bits flipped, we need the
probability of successful decoding to be O(1/poly(n)).

(iv) The decoding algorithm should be universal, i.e., it
should not rely on the exact knowledge of the bit flipping
probability.

Many of the state-of-the-art capacity achieving codes, such

as LDPC codes and Polar codes, satisfy the first three prop-
erties. The decoding algorithms in these codes need exact
knowledge of the channel, meaning that these algorithms need
the flip probability ζi as a known input parameter. However,
in our problem, ζi = Φ(−|sj |/σ), where |sj | is unknown.
This is the reason that we need universal decoding algorithm.
In practice, since we have an upper bound of the bit flip
probability, ζi ≤ Φ(−β/σ), it is reasonable to believe that
if we use the upper bound as the bit flip probability, the state-
of-the-art capacity achieving codes still work well, although
there is no theoretical guarantee. For theoretical interests,
here we propose a concatenated code which satisfies all the
four properties provably. The results are given in Lemma 1.
This code is based on Justesen’s concatenation scheme [14],
linear complexity expander codes [15], and the Wozencraft’s
ensemble [16]

Lemma 1. There exists a concatenated code

fc : [n]→ {1,−1}R1

for BSC with block length R1 = Θ(log(n) log log(n)) and
universal decoding algorithm, which can successfully decode
with probability O(1/poly(n)). The decoding complexity is
Θ(log1+r(n)), where r > 0 is an arbitrarily small constant.

We refer the readers to the Appendix B for the details of
the code and the proof of Lemma 1. With this concatenated
code, we can construct the location matrix L by setting the
j-th column as the codeword of j, i.e., Lj = fc(j).

V. PEELING DECODER WITH TRUNCATION

The basic idea of the peeling decoder is to use the location
matrix and verification matrix to find the location and estimate
the value of singleton balls. After identifying a singleton,
the decoder peels this singleton ball from the bins that it is
connected to. Then, more bins become singletons. The decoder
continues the peeling process iteratively until no singletons can
be found. The major difference between our work and [9] is
that the signal components can be any Θ(1) real number with
absolute value lower bounded by β, which implies that we
cannot obtain the exact value of the singleton balls. Then, the
error propagation in the peeling process is inevitable. In this
paper, we propose a truncation peeling strategy that controls
the error propagation.

We now revisit the example in Figure 1 using the truncation
peeling strategy, and demonstrate the algorithm in Figure
2. The key in the truncated peeling strategy is that we fix
the maximum number of balls that can be peeled from a
bin. Denote this maximum number by D, which is an input
constant parameter of the algorithm. This means that if at
least D balls have been peeled from a particular bin, we
stop using this bin in following iterations, i.e., we “truncate”
large multitons with more than D balls. We set D = 2 in the
example in Figure 2.

We first assume that by the location measurements and
verification measurements, we can perfectly identify whether
a bin is a singleton and find the location of the singleton ball.

As we can see, in Figure 2, the bins 1 and 7 are singletons
and the corresponding singleton balls are balls 1 and 7. In
the first iteration, the two singleton balls are found and we
let ŝ1 and ŝ7 be the estimated values. Then, we do peeling,
meaning that we subtract the measurements contributed by the
two singleton balls from the measurements in other bins. We
get the remaining measurements of bins 2, 3, 4, 5, and 6 after
the first iteration:

y
(1)
2 = y2 − ŝ1T 1 − ŝ7T 7

y
(1)
3 = y3 − ŝ1T 1

y
(1)
4 = y4 − ŝ7T 7

y
(1)
5 = y5

y
(1)
6 = y6.

Then we can see that bins 3 and 4 become singletons and
the corresponding singleton balls are 3 and 6. We should
also notice that since two balls have been peeled from bin
2, according to the truncated peeling strategy, no balls can be
peeled from bin 2, and consequently bin 2 is not used in the
following iterations. Let ŝ3 and ŝ6 be the estimated values of
the two singleton balls. Then, the remaining measurements of
bins 5 and 6 after the second iteration are:

y
(2)
5 = y

(1)
5 − ŝ3T 3

y
(2)
6 = y

(1)
6 − ŝ6T 6.

Then, bins 5 and 6 become singletons and the singleton ball
is ball 5. We can estimate the value of ball 5 and get ŝ5. So
far, all the balls have been found, meaning that the all the
non-zero elements are found.

We summarize the peeling procedure in Algorithm 1 in
Appendix A. The following result of the peeling procedure
guarantees that after the peeling process stops, an arbitrarily
large fraction of balls are found.

Lemma 2. Assume that we can always find the correct
location indices of singleton balls. For any δ > 0, when
K is large enough, there exist proper parameters d and
M = Θ(log(1/δ)K), such that after N(δ) iterations of
truncation peeling, the fraction of non-zero signal elements
which are not detected is less than δ, with probability
O(exp{−c1(δ)Kc2(δ)}). Here, c1(δ), c2(δ) > 0 are two quan-
tities determined by δ.

We refer the readers to Appendix C for the proof of Lemma
2.

VI. SINGLETON DETECTION AND SIGNAL ESTIMATION

In Section V, we have shown that if the singleton balls are
always perfectly detected, an arbitrarily large fraction of non-
zero signal elements can be found. Then, an important issue is
to guarantee the correct singleton detection and accurate value
estimation.

First, recall that we have shown in Section IV that, in
the first iteration, if a bin is indeed a singleton, from the
location measurements, one can decode the modified codeword

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(b)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(c)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(d)

Fig. 2: Peeling with truncation. The decoder stops using Bin 2 in (c) and (d), since the number of balls peeled from this bin exceeds the
maximum number.

corresponding to the location index of the singleton ball. Due
to the sign ambiguity, there may be two possible locations
and the true location is guaranteed to be one of them with
high probability. We still need to find the correct location and
estimate the value of the singleton ball. On the other hand,
if the bin is not a singleton, the decoding algorithm of the
concatenated code still returns at most two possible locations
and we have to make sure that these bins are not considered
as singletons. These problems are addressed by energy tests
using the verification measurements, based on the same idea
as in [12].

A. Signal Value Estimation

Consider the i-th bin in the (t + 1)-th iteration, and let j
be a possible location of the singleton ball that the decoding
algorithm of the concatenated code suggests. We assume that
the bin is indeed a singleton with the singleton ball located at
j, and estimate sj by the remaining verification measurements,
i.e.,

ŝj =
1

R2

R2∑
k=1

Vk,jy
(t),v
i,k . (1)

Here, y(t),v
i,k is the k-th remaining verification measurement of

the i-th bin after the t-th iteration. Intuitively, this estimation
method is simply averaging over the measurements with cor-
rected sign, meaning that we flip the sign if the corresponding
entry in the verification matrix is −1. The theoretical guarantee
of singleton detection and estimation is presented in Lemma
3.

Lemma 3. There exists a constant c > 0 such that for an
accuracy level ε > 0, if β ≥ cε, then, for a singleton in any
constant iteration, we have:

(i) the location measurements can find the correct location
of the singleton ball with probability 1−O(1/poly(n)).

(ii) by equation (1), the estimated value of singleton ball ŝj
satisfies |ŝj − sj | ≤ Cjε for some constant Cj > 0

with probability 1 −O(1/poly(n)) given the number of
verification measurements in a bin is R2 = Θ(σ

2

ε2 log(n)).

We should note that result (i) is a simple extension of the
conclusion that we get in Section IV, since in Section IV,
we focused on the first iteration. Result (ii) shows that for the
preassigned accuracy level ε > 0, if the number of verification
measurements is R2 = Θ(σ

2

ε2 log(n)), then we can estimate the
signal value within constant factor of ε with high probability.

B. Energy Test

So far, we have seen that if a bin is indeed a singleton,
the location measurements can find the correct location of the
singleton ball and the verification measurements can give ac-
curate estimation of the value. However, there are still several
things left. As we have mentioned, we need to clarify sign
ambiguity, and rule out non-singleton bins. These operations
can be done by energy tests.

Consider the i-th bin in the t-th iteration. Let B be the set
of location indices of balls that have been found before this
iteration. Before using the location measurements to find the
location index of a singleton ball, we use an energy test to
check if this bin is a zeroton, i.e., check if supp(xi) = B. If
it is, there is no need to run the decoding algorithm of the con-
catenated code. Specifically, we construct ŷ1 =

∑
g∈B ŝgV g

and conduct the zeroton energy test with threshold τ > 0:

if
1

R2
‖yvi − ŷ1‖22 < τ, bin i is a zeroton;

else bin i is not a zeroton.

If the bin is not a zeroton, we use the location measure-
ments to find a possible singleton location j and get the
estimated the value ŝj . We need to verify if there is indeed
supp(xi) = B∪{j}. Similar to the zeroton test, we construct
ŷ2 =

∑
g∈B∪{j} ŝgV g and conduct the singleton energy test

with threshold τ > 0:

if
1

R2
‖yvi − ŷ2‖22 < τ,

bin i is a singleton with singleton ball at j;
else

bin i is not a singleton with singleton ball at j.

The intuition behind both energy tests is simple. We actually
make a hypothesis that the true signal of a bin is x̂ and
construct the corresponding measurements ŷ = V x̂. If the
support of x̂ and xi are the same and the values are accurately
estimated, i.e., ‖x̂−xi‖∞ < C0ε, for some constant C0 > 0.
Then the energy of the difference between the actual mea-
surements and the constructed measurements should be small;
otherwise, the energy should be large. For zeroton energy
test, the hypothesis signal consists of the balls that are found
before the t-th iteration, and for the singleton energy test, the
hypothesis signal consists of the balls which are found before
and including the t-th iteration. The theoretical guarantees of
both energy tests are provided in Lemma 4.

Lemma 4. There exist constants c3 > 0 and c4 > 0 such that
when β > (c3σ + c4ε)

2, there exists proper threshold τ > 0
such that a particular energy test succeeds with probability
1−O(1/poly(n)), when R2 = Θ(max{σ2/ε2, 1} log(n)).

VII. PROOF OF THEOREM 1

In this section, we give the final proof of our main result.
First, we analyze the error probability. There are three possible
error events,
(i) E1: the peeling algorithm does not find an arbitrarily large

fraction of non-zero elements.
(ii) E2: error in decoding algorithm of concatenated code

(location decoding).
(iii) E3: error in value estimation or energy test.
We have shown that

P{E1|E{
2 , E

{
3} = O(exp{−c1(δ)K−c2(δ)}).

Similar to the analysis in [12], since we need to conduct
Θ(K) times of location decoding and energy tests, using union
bound, P{E2} = O(1/poly(n)) and P{E3} = O(1/poly(n)).
Then by union bound and law of total probability, we get
the error probability O(exp{−c1(δ)K−c2(δ)} + 1/poly(n)).
Then computational complexity can be analyzed by the same
method as in [12]. Combining Lemmas 1, 2, 3, and 4, our
main result is proved.

VIII. EXPERIMENTAL RESULTS

In this section, we provide the results of our numerical
experiments to justify our theoretical results. We conduct two
experiments to test the sample and time complexities.

In the both experiments, we set the left degree of the
bipartite graph to be d = 10, and the number of bins to
be M = 10K. The maximum number of ball that can be
peeled from a bin is set to be D = 5. The nonzero elements
of the signal are generated from a uniform distribution in

[−10,−3]∪ [3, 10], and the locations of the nonzero elements
are uniformly chosen from the n coordinates. The additive
noise are all i.i.d. Gaussian distributed with zero mean. The
inner code that we use for the singleton detection is a (3, 6)
regular LDPC code with rate 0.5.

In the first experiment, we choose n = 4096 and test
the sample complexity of our algorithm. Specifically, we test
how the empirical probability of successful recovery changes
when we increase the number of verification measurements
in each bin. We define the event of successful recovery as
the cases when ‖ŝ − s‖∞ ≤ 0.1, where ŝ and s denote
the recovered signal and the original signal, respectively. The
empirical success probability is computed by averaging 100
trials and the phase transition behavior under different noise
power is shown in Figure 3.

In the second experiment, we fix the noise to be N (0, 0.1)
distributed, and the number of verification measurements in
each bin to be 2 log2(n). We test the average running time
with different (n,K) pairs over 100 trials. As we can see, the
time cost of our algorithm is linear in K and do not have
significant dependence on n, and this behavior justifies our
theory.

0 1 2 3 4 5 6

number of verification measurements / log
2
(n)

0

0.2

0.4

0.6

0.8

1

P
r{

su
cc

es
s}

σ=0.1

σ=0.15

σ=0.2

Fig. 3: Sample complexity.

20 40 60 80 100

K

0

0.5

1

1.5

2

2.5

R
u

n
n

in
g

 t
im

e(
se

c)

n=1024
n=2048
n=4096

Fig. 4: Time complexity.

IX. CONCLUSIONS

In this paper, we propose an algorithm for noisy com-
pressive sensing based on sparse graph codes. The algorithm
can recover an arbitrarily large fraction of the support of the

unknown signal with `∞ norm recovery guarantee and near
optimal sample and time complexities. The repeated version
of the algorithm can guarantee full support recovery with high
probability with an additional log(K) factor in the sample and
time complexities. Future work may include generalizing our
framework to other fast signal processing algorithms based on
sparse graph codes.

REFERENCES

[1] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application
of compressed sensing for rapid mr imaging,” Magnetic resonance in
medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[2] J. Romberg, “Imaging via compressive sampling [introduction to com-
pressive sampling and recovery via convex programming],” IEEE Signal
Processing Magazine, vol. 25, no. 2, pp. 14–20, 2008.

[3] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” Information Theory, IEEE Transactions on, vol. 52, no. 2, pp.
489–509, 2006.

[4] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and Computational Harmonic Analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[5] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” Information Theory, IEEE
Transactions on, vol. 53, no. 12, pp. 4655–4666, 2007.

[6] S. Sarvotham, D. Baron, and R. G. Baraniuk, “Sudocodes-fast measure-
ment and reconstruction of sparse signals,” in Information Theory, 2006
IEEE International Symposium on. IEEE, 2006, pp. 2804–2808.

[7] H. V. Pham, W. Dai, and O. Milenkovic, “Sublinear compressive sensing
reconstruction via belief propagation decoding,” in Information Theory,
2009. ISIT 2009. IEEE International Symposium on. IEEE, 2009, pp.
674–678.

[8] P. Indyk and M. Ružić, “Near-optimal sparse recovery in the l1 norm,” in
Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual
IEEE Symposium on. IEEE, 2008, pp. 199–207.

[9] X. Li, S. Pawar, and K. Ramchandran, “Sub-linear time support recov-
ery for compressed sensing using sparse-graph codes,” arXiv preprint
arXiv:1412.7646, 2014.

[10] X. Chen and D. Guo, “A generalized ldpc framework for robust and
sublinear compressive sensing,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 4623–4627.

[11] S. Pawar and K. Ramchandran, “A robust r-ffast framework for comput-
ing a k-sparse n-length dft in o (k log n) sample complexity using sparse-
graph codes,” in 2014 IEEE International Symposium on Information
Theory. IEEE, 2014, pp. 1852–1856.

[12] D. Yin, K. Lee, R. Pedarsani, and K. Ramchandran, “Fast and robust
compressive phase retrieval with sparse-graph codes,” in IEEE Interna-
tional Symposium on Information Theory (ISIT). IEEE, 2015.

[13] R. Pedarsani, K. Lee, and K. Ramchandran, “Sparse covariance estima-
tion based on sparse-graph codes,” in Annual Allerton Conference on
Communication, Control, and Computing, 2015.

[14] J. Justesen, “Class of constructive asymptotically good algebraic codes,”
IEEE Transactions on Information Theory, vol. 18, no. 5, pp. 652–656,
1972.

[15] D. A. Spielman, “Linear-time encodable and decodable error-correcting
codes,” in Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing. ACM, 1995, pp. 388–397.

[16] J. L. Massey, “Threshold decoding,” DTIC Document, Tech. Rep., 1963.
[17] M. Cheraghchi, “Capacity achieving codes from randomness conduc-

tors,” in IEEE International Symposium on Information Theory (ISIT).
IEEE, 2009, pp. 2639–2643.

[18] R. Pedarsani, K. Lee, and K. Ramchandran, “Phasecode: Fast and ef-
ficient compressive phase retrieval based on sparse-graph-codes,” arXiv
preprint arXiv:1408.0034, 2014.

[19] ——, “Capacity-approaching phasecode for low-complexity compres-
sive phase retrieval,” arXiv preprint arXiv:1412.5694, 2014.

APPENDIX

A. Pseudocode of Peeling Decoder with Truncation Strategy

Algorithm 1 Peeling decoder with truncation strategy

Input: y, T , H , D
Output: Estimated signal ŝ
ŝ← 0,
number of peeled balls in each bin: Bi ← 0, i ∈ [M],
Indicator of utilizability of bins: Ui ← true, i ∈ [M],
y

(0)
i ← yi, i ∈ [M], stop← false, t← 1

while stop = false do
Find singleton balls.
It ← {indices of all singletons found in the iteration t}.
Ui ← false, for all i ∈ It.
Jt ← {locations of singleton balls found in iteration t}.
y

(t)
i ← y

(t−1)
i , i ∈ [M].

if Jt 6= ∅ then
for all j ∈ Jt do

Estimate ŝj .
for all i ∈ [M] such that Ui = true and hi,j = 1
do
y

(t)
i ← y

(t)
i − ŝjT j .

Bi ← Bi + 1.
if Bi = D then
Ui ← false

end if
end for

end for
else

stop← true
end if
t← t+ 1

end while
return ŝ

B. Proof of Lemma 1
In this section, we give a brief proof of Lemma 1. The

construction of the concatenated code in Lemma 1 is based
on Justesen’s concatenation scheme [14] and similar method
is also analyzed in [17]. The concatenated code consists of
an outer code fout and an ensemble of inner codes I. For the
outer codes, we use an expander-based code proposed in [15].
The outer code maps the message to a codeword with length p
on an alphabet with size 2k, i.e., fout : [n]→ [2k]p. Recall that
by definition, the rate of the outer code is Rout = dlog(n)e/p.
We make essential use of the Theorem in [15].

Theorem 3. For every integer k > 0 and every absolute
constant R′ < 1, there is an explicit family of expander-based
linear codes with alphabet [2k] and rate Rout = R′ that is
error-correcting for a Θ(1) fraction of errors. The running
time of the encoder and the decoder is linear in the block
length of the codewords.

Note that here, the Θ(1) fraction of error can be adver-
sarially chosen, and that the decoding algorithm of the outer

code does not rely on the knowledge of the channel. Now let
(c1, c2, . . . , cp) ∈ [2k]p be the codeword that we obtained from
the outer code, and we call it the outer codeword. As we have
mentioned, we use an ensemble of inner codes I, which means
that I = {g1, . . . , gp} is a collection of p codes which encode
the symbols in the outer codeword as a new q-bit codeword
with alphabet {1,−1}. Specifically, each code gi in I is a
map gi : [2k] → {1,−1}q , and we encode the i-th symbol
in the outer codeword by the i-th code in I. This gives us
the final codeword (g1(c1), g2(c2), . . . , gp(cp)) ∈ {1,−1}qp,
which also implies that the block length of the concatenated
code is R1 = qp.

Then we show the details of the inner code ensemble. We
choose the inner code ensemble to be the Wozencraft’s en-
semble [16]. The Wozencraft’s ensemble satisfies the property
that all but a o(1) fraction of the codes in the ensemble are
capacity achieving, where the asymptotic is with respect to
the block length q. Specifically, for the capacity achieving
codes in the ensemble, the probability of decoding error is
exponentially small in the block length q, i.e., e−αq for some
constant α > 0, as long as the rate of the codes Rin = k/q is
below the capacity of the BCS. Here, we should notice that
we do need an upper bound of the bit flip probability in the
design of the inner code since we need to get a lower bound
of the capacity of the BSC, however, we do not need the exact
value of the bit flip probability. Then, it is shown in [17] that
using brute force maximum likelihood decoder for the inner
code and the decoding algorithm of the expander-based outer
code, the error probability is exponentially small in the block
length of the concatenated code, i.e., e−α

′R1 for some constant
α′ > 0.

Now we analyze the block length and decoding complexity
of the concatenated code. The number of codes in the Wozen-
craft’s ensemble is 2q , meaning that p = 2q . Since rate of
the outer code is a constant Rout = dlog(n)e/p which can
be arbitrarily close to 1, we know that p = Θ(log(n)). Then
q = Θ(log log(n)) and the block length of the concatenated
code is R1 = qp = Θ(log(n) log log(n)). Consequently the
error probability is e−α

′R1 = O(1/poly(n)), where poly(n)
is a polynomial of n which can have arbitrarily large degree.
Consider the decoding complexity. For the inner code, the
complexity of testing each possible message is Θ(q) and there
are 2k = 2qRin messages. Therefore, for each inner code,
the computational complexity of the brute force maximum
likelihood decoding is Θ(2qRinq). Since there are p inner
codes, the complexity of decoding all the inner codes is
Θ(2qRinqp) = Θ(p1+Rinq) = Θ(log1+Rin(n) log log(n)). Since
we do not require the inner code to be capacity achieving,
Rin can be arbitrarily close to 0, we can conclude that
complexity of decoding all the inner codes is Θ(log1+r(n)),
where r > 0 can be arbitrarily small. Since the complexity of
decoding the outer code is linear in its block length, which is
Θ(p) = Θ(log(n)), we know that the decoding complexity of
the concatenated code is Θ(log1+r(n)).

C. Proof of Lemma 2

The proof of Lemma 2 is based on density evolution,
which is a common and powerful tool in modern coding
theory. Similar ideas have been applied in [9], [18], [19].
The basic idea is to get a recursive equation to analyze the
fraction of singleton balls that are not recovered in a particular
iteration. We will only give brief proof here and focus on the
truncation peeling strategy, which is main difference between
our algorithm and previous works. We refer the readers to [9],
[18] for more details.

From now on, we do not consider the connection between
the zero signal elements and the bins, meaning that we only
focus on the d-left regular random bipartite graph with K
balls on the left and M bins on the right. We let M = ηK for
some constant η > 0. Using the same Poisson approximation
as in [18], we get the expected fraction of edges which are
connected to right nodes with degree i is

ρi ≈
(d/η)i−1e−d/η

(i− 1)!
.

Now we consider the peeling process as a message passing
process on the bipartite graph. According to our peeling
decoding algorithm, a singleton can send a “peeling” message
to the ball that is connected to it, and a peeled singleton ball
sends “peeled” message to all the bins that are connected to
it. In a particular iteration, a bin sends a “peeling” message
to a ball through an edge if other edges connected to this bin
all send “peeled” messages in the previous iteration and a ball
sends a “peeled” message to a bin through an edge if if at
least one of the bins that is connected to it sends a “peeling”
message to it. We should also notice that the bins with degree
greater than D never send “peeling” message to the balls due
to the truncation strategy.

As in [9], [18], we still need to first assume that the
neighborhood of each edge with a constant depth is a tree
(tree-like assumption). Let pj be the probability that in the jth
iteration, a randomly chosen edge is not peeled, i.e., sending
a “not peeled” message. Then, under the tree-like assumption,
we have the density evolution equation:

pj+1 = F (pj) =

(
1−

D∑
i=1

ρi(1− pj)i−1

)d−1

.

Similar to the analysis in [18], we need to consider the fix
point of F (t), i.e., the point such that F (t) = t, and show
that the fix point can be arbitrarily small by choosing proper
parameters. We have

F (t) =

(
1−

D∑
i=1

(d/η(1− t))i−1e−d/η

(i− 1)!

)d−1

=

(
1−

D−1∑
i=0

(d/η(1− t))ie−d/η

i!

)d−1

=

(
1− e−d/η(ed(1−t)/η − eξ(d(1− t)/η)D

D!
)

)d−1

,

where 0 < ξ < d(1 − t)/η. We can choose D to be large
enough such that (d(1−t)/η)D

D! < 1
2 . Then we have

F (t) <

(
1− 1

2
e−dt/η

)d−1

:= G(t).

Then we know that the fix point of F (t) should be upper
bounded by that of G(t). Further, if we keep d/η to be a
constant and enlarge d, the fix point of G(t) can be arbitrarily
small, and consequently, the fix point of F (t) can be arbitrarily
small. Specifically, let p? ∈ (0, 1) be the fix point of F (t),
then for any δ > 0, there exist parameters d and η such that
p? < δ. Here, we briefly analyze the relationship between η
and the fix point of G(t), denoted by t?. Since t? = G(t?) =
(1− 1

2e
−dt?/η)d−1, and t? is close to 0, we have e−dt

?/η ≈ 1
and thus t? ≈ (1

2)d−1. Therefore, d = Θ(log(1/t?)), and
further, since we keep d/η as a constant, η = Θ(log(1/t?)).
Since the fix point of F (t), p? is upper bounded by t?, we have
η = Θ(log(1/p?)). We can choose parameters such that p? =
Θ(δ) and then, η = Θ(log(1/δ)). Using the same argument as
in [18], we can show that for any δ > 0, there exist a constant
N(δ) and proper parameters d and η such that pN < δ.

By the same martingale argument as in [18] and taking
the event that the tree-like assumption does not hold into
consideration, we can show that the fraction of balls which
are not peeled is highly concentrated around pN . Let Z be
the fraction of balls which are not peeled after N -th iteration,
when K is large enough, we have for any δ > 0,

P {|Z − pN | > δ} < 2 exp{−Cδ2K1/(4N+1)},

where C > 0 is a universal constant. The proof of Lemma 2
is completed by choosing N such that pN < δ.

